Control of self-renewal and differentiation of hematopoietic stem cells: HOXB4 on the threshold.

نویسندگان

  • Hannes Klump
  • Bernhard Schiedlmeier
  • Christopher Baum
چکیده

The homeodomain transcription factor HOXB4 is one of the most attractive tools to expand hematopoietic stem cells in vitro and in vivo and to promote the formation of hematopoietic cells from in vitro differentiated embryonic stem cells. However, the expression levels compatible with the favorable effect of enhanced self-renewal without perturbing differentiation, in vivo, remain to be determined. In this paper, we discuss the necessity to define the "therapeutic width" of HOXB4 expression, based on observations from our lab and others that demonstrate that ectopic HOXB4 expression leads to a concentration-dependent perturbation of lineage differentiation of mouse and human hematopoietic cells. In summary, the combined results argue in favor of the existence of certain threshold levels for HOXB4 activity that control the differentiation and self-renewal behavior of hematopoietic stem and progenitor cells. Indeed, existing evidence suggests that dosage effects of ectopically expressed transcription factors may be more the rule than an exception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation-inducing stimulus.

The cytosine analogue decitabine alters hematopoietic differentiation. For example, decitabine treatment increases self-renewal of normal hematopoietic stem cells. The mechanisms underlying decitabine-induced shifts in differentiation are poorly understood, but likely relate to the ability of decitabine to deplete the chromatin-modifying enzyme DNA methyltransferase 1 (DNMT1), which plays a cen...

متن کامل

Downregulation of Prdm16 mRNA is a specific antileukemic mechanism during HOXB4-mediated HSC expansion in vivo.

Overexpression of HOXB4 in hematopoietic stem cells (HSCs) leads to increased self-renewal without causing hematopoietic malignancies in transplanted mice. The molecular basis of HOXB4-mediated benign HSC expansion in vivo is not well understood. To gain further insight into the molecular events underlying HOXB4-mediated HSC expansion, we analyzed gene expression changes at multiple time points...

متن کامل

Hematopoietic Expression of Hoxb4 Is Regulated in Normal and Leukemic Stem Cells through Transcriptional Activation of the Hoxb4 Promoter by Upstream Stimulating Factor (Usf)-1 and Usf-2

The homeobox genes encode a family of transcription factors that regulate development and postnatal tissue homeostasis. Since HOXB4 plays a key role in regulating the balance between hematopoietic stem cell renewal and differentiation, we studied the molecular regulation of HOXB4 expression in human hematopoietic stem cells. HOXB4 expression in K562 cells is regulated at the level of transcript...

متن کامل

Increased mir33 Expression in Expanded Hematopoietic Stem Cells Cultured on Adipose Stem Cells Feeder layer

Bachgroun: Hematopoietic stem cell derived from umbilical cord blood (UCB) has been used for regenerative medicine in hematological abnormalities. MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development of tissue and cancer. Some studies have shown that miR-33, has a critical role in control of self-renewal cells. He...

متن کامل

Increased HoxB4 Inhibits Apoptotic Cell Death in Pro-B Cells

HoxB4, a homeodomain-containing transcription factor, is involved in the expansion of hematopoietic stem cells and progenitor cells in vivo and in vitro, and plays a key role in regulating the balance between hematopoietic stem cell renewal and cell differentiation. However, the biological activity of HoxB4 in other cells has not been reported. In this study, we investigated the effect of overe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 1044  شماره 

صفحات  -

تاریخ انتشار 2005